Oscillations in light-triggered logic microfluidic circuit

نویسندگان

  • Laura Gilson
  • Chong Shen
  • Marco A. Cartas-Ayala
  • Rohit Karnik
چکیده

Control of droplets in microfluidic environments has numerous applications ranging from analysis and sample preparation for biomaterials synthesis (Mann and Ozin 1996) and medical diagnostics (Pipper et al. 2007) to photonics (Schmidt and Hawkins 2011). Here we study the oscillations present in a microfluidic circuit capable of sorting curable droplets on demand by triggering the circuit with UV-light. Prior to this paper we showed that a simple circuit can selfsort particles and produce a binary output, sorted or rejected stream of particles, based on the hydrodynamic resistance induced by the particles as they flow through the microfluidic channels. We showed that the cross-linking of droplets can modulate the resistance, and demonstrated particle switching by sorting of otherwise identical droplets of uncured and cured photocurable solution immersed in mineral oil solution. Before arriving at the sorting circuit, droplets made of a photocurable solution were illuminated by a UV-light from a mercury lamp, curing them. By tuning the outlet pressures, the switching threshold could be tuned so that uncured droplets were rejected while cured droplets were switched. (Raafat et al. 2010, Cartas Ayala et al. 2013). Here we use this system to study the oscillations in this circuit due to particle-particle interactions in the circuit. The circuit oscillation can be used as a counter with a light ON/OFF switch. The circuit behavior agrees well with theoretical predictions of droplet oscillations. Furthermore, the circuit oscillations can be switched on or off by UV-light illumination. This experiment demonstrates switching of particles based on deformability, illustrates the switching of particles by using light, and the possibility of creating new managing schemes for droplets by combining light control with droplet generation-rate control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Tolerant DNA Computing Based on ‎Digital Microfluidic Biochips

   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...

متن کامل

Coordinated Control of Doubley Fed Induction Generator Virtual Inertia and Power System Oscillation Damping Using Fuzzy Logic

Doubly-fed induction generator (DFIG) based wind turbines with traditional maximum power point tracking (MPPT) control provide no inertia response under system frequency events. Recently, the DFIG wind turbines have been equipped with virtual inertia controller (VIC) for supporting power system frequency stability. However, the conventional VICs with fixed gain have negative effects on inter-ar...

متن کامل

Designed -in-diagnostics: A new optical method

An in-circuit diagnostic test structure triggered by a light pulse captures logic states on-chip with picosecond timing accuracy, and the results read out via a scan chain thus providing precise logic transition time information from deep inside the chip, greatly aiding failure analysis. The method could also make time measurement of switching events inside an IC when it is mounted in a printed...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits

Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013